/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lcd_character.h"
#include "math.h"
#include "stdbool.h"
#include "stdlib.h"
#include "string.h"
#include "stm32f4xx_hal.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim14;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
/* USER CODE BEGIN PV */
RTC_TimeTypeDef sTime;
RTC_DateTypeDef sDate;
/* CALIBRATION */
__IO uint16_t ADC_value [4];
uint8_t MEL_CALIBRATION = 1; // Change up to customer
uint8_t MEL_CALIBRATION_INTERVAL = 20; // Change up to customer
/* DISPLAY */
char print[20], print1[20];
/* SENSOR */
float MEL_V1 = 0, MEL_V2 = 0, MEL_I1 = 0, MEL_I2 = 0;
float MEL_COUNTER = 0;
int SampleData = 1000;
/*PARAMETER*/
cons int MEL_VOUT_TARGET = 14.4;
cons int MEL_STEP = 0.5;
//PWM
float MEL_DUTY;
char buffer[200];
//Bluetooth
uint8_t rx_data[20];
char buff_transmit[50];
//RTC
char time[50], date[50];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM14_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_RTC_Init(void);
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance==TIM14) {
float adc_v1 = ADC_value[3], adc_v2 = ADC_value[2], adc_i1 = ADC_value[1], adc_i2 = ADC_value[0];
static float avg_adcv1, avg_adcv2, avg_adci1, avg_adci2, count = 0;
avg_adcv1 += adc_v1; avg_adcv2 += adc_v2; avg_adci1 += adc_i2; count++;
if (count>= SampleData) {
/* INPUT TO ADC GLOBAL */
MEL_V1 = avg_adcv1/count; MEL_V2 = avg_adcv2/count; MEL_I1 = avg_adci1/count; MEL_I2 = avg_adci2/count;
avg_adcv1 = 0; avg_adcv2 = 0; avg_adci1 = 0; avg_adci2 = 0; count = 0;
}
}
}
void mel_read_sensor(float *in_v, float *out_v, float *in_i, float *out_i) {
if (in_v != NULL) {
*in_v = 0;
} else {
*in_v = (0.01*MEL_V1) + 0.7232; // Need updated calibration
}
if (out_v != NULL) {
*out_v = 0;
} else {
*out_v = (0.0081*MEL_V2) + 0.4214; // Need updated calibration
}
if (in_i != NULL) {
*in_i = 0;
} else {
*in_i = ((-0.0082*MEL_I1) + 20.456); // Need updated calibration
}
if (out_i != NULL) {
*out_i = 0;
} else {
*out_i = ((0.0077*MEL_I2) - 22.974); // Need updated calibration
}
}
float mel_set_DUTY(float duty_in_percent) {
int pwm = (int)round((duty_in_percent/100)*2099);
TIM4->CCR3 = pwm;
HAL_Delay(50);
float in_v, out_v;
mel_read_sensor(&in_v, &out_v, NULL, NULL);
return out_v;
}
float mel_get_step(int D) {
float out_v_before;
mel_read_sensor(NULL, &out_v_before, NULL, NULL);
float out_v = mel_set_DUTY(MEL_DUTY);
float local_step = out_v - out_v_before;
if (local_step < 0) {
local_step *= -1;
}
return local_step;
}
void mel_display(float in_v, float out_v, float in_i, float out_i) {
lcd_gotoxy(0,2);
sprintf(print, "Vi:%2.2f ", in_v); lcd_puts(print);
lcd_gotoxy(8,2); lcd_puts("V ");
lcd_gotoxy(10,1);
sprintf(print, "Vo:%2.2f ", out_v); lcd_puts(print);
lcd_gotoxy(18,1); lcd_puts("V ");
lcd_gotoxy(10,2);
}
void mel_calibration() {
float OUT_V = -1;
lcd_gotoxy(0,1);
lcd_puts(" CALIBRATING ");
float step = 0;
for ( int i = 0; (float)i < (float)MEL_CALIBRATION_INTERVAL; i++ ) {
if ( OUT_V >= 11 ) {
step += mel_get_step(MEL_DUTY--);
} else {
step += mel_get_step(MEL_DUTY++);
}
float z = ((float)i/(float)MEL_CALIBRATION_INTERVAL)*100;
/* ANIMATION LOADING */
lcd_gotoxy(0,2);
sprintf(print, " %.0f ",z); lcd_puts(print);
lcd_gotoxy(13,2);
sprintf(print, "%%"); lcd_puts(print);
z=((float)i/(float)MEL_CALIBRATION_INTERVAL)*20;
lcd_gotoxy(z,3); lcd_puts("*");
HAL_Delay(100);
}
MEL_STEP = step/MEL_CALIBRATION_INTERVAL;
MEL_CALIBRATION = 0;
lcd_clear();
}
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM4_Init();
MX_TIM14_Init();
MX_USART3_UART_Init();
MX_RTC_Init();
/* USER CODE BEGIN 2 */
lcd_init();
HAL_TIM_Base_Start_IT(&htim14);
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) &ADC_value,4);
HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_3);
HAL_UART_Receive_DMA(&huart3,(uint8_t *) rx_data,4);
//TAMPILAN LCD INTEGRASI//
lcd_gotoxy(0,0); lcd_puts("-- ALAT YG SYUPER --");
lcd_gotoxy(0,1); lcd_puts(" CHUWANGGIHHH ");
lcd_gotoxy(0,2); lcd_puts("By Melati ELIN 2018 ");
lcd_gotoxy(0,3); lcd_puts(" NIP ISI SENDIRI "); HAL_Delay(2000);
lcd_clear();
while (1)
{
/* DECLARATION */
float in_v, out_v, in_i, out_i;
/* READING ADC */
mel_read_sensor(&in_v, &out_v, &in_i, &out_i);
/* CALIBRATION DUTY STEP */
if (MEL_CALIBRATION) {
mel_calibration();
}
/* DUTY CALCULATION */
if (out_v < MEL_VOUT_TARGET) {
float a = (MEL_VOUT_TARGET) - out_v;
a = a/(10*MEL_STEP);
if (MEL_DUTY + a < 99) {
MEL_DUTY = MEL_DUTY + a;
} else {
MEL_DUTY = 99;
}
mel_get_step(MEL_DUTY); // Calling Duty function
} else if (out_v > MEL_VOUT_TARGET) {
float a = (MEL_VOUT_TARGET) + out_v;
a = a/(10*MEL_STEP);
if (MEL_DUTY > a) {
MEL_DUTY = MEL_DUTY - a;
} else {
MEL_DUTY = 0;
}
mel_get_step(MEL_DUTY); // Calling Duty function
}
/* SHOW LCD */
mel_display(in_v, out_v, in_i, out_i);
lcd_gotoxy(0,1);
sprintf(print1, "D : %3.0f ", MEL_DUTY); lcd_puts(print1);
lcd_gotoxy(8,1); lcd_puts("% ");
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x23;
sTime.Minutes = 0x59;
sTime.Seconds = 0x45;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_SUNDAY;
sDate.Month = RTC_MONTH_DECEMBER;
sDate.Date = 0x31;
sDate.Year = 0x21;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 2099;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief TIM14 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 0;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 9999;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
/* DMA1_Stream3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn);
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PD12 PD13 PD0 PD1
PD2 PD3 PD4 PD5
PD6 PD7 */
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : PC6 PC7 PC9 */
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lcd_character.h"
#include "math.h"
#include "stdbool.h"
#include "stdlib.h"
#include "string.h"
#include "stm32f4xx_hal.h"
/*Diisi Berapa data yang ingin di sampling dalam 1 Gelombang*/
#define SampleData 1000
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim14;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
/* USER CODE BEGIN PV */
RTC_TimeTypeDef sTime;
RTC_DateTypeDef sDate;
/*----Inisialisasi jumlah ADC----*/
__IO uint16_t ADC_value [4];
/*DMA*/
float adc1, Asq[SampleData], Asum, adc1, Vin;
float adc2, Bsq[SampleData], Bsum, adc2, Vo;
float adc3, Csq[SampleData], Csum, adc3, Iin;
float adc4, Dsq[SampleData], Dsum, adc4, Io;
int k=0;
char buff1[200], buff2[200], buff3[200], buff4[200];
//PWM
float pwm = 629.7 , pwm1;
float D;
char buffer[200];
//Bluetooth
uint8_t rx_data[20];
char buff_transmit[50];
//RTC
char time [50], date[50];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM14_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_RTC_Init(void);
/* USER CODE BEGIN PFP */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
if (htim->Instance==TIM14) {
/*----ADC arus out----*/
adc4 = ADC_value [0];
Dsum -=Dsq[k];
Dsq[k] = adc4;
Dsum +=Dsq[k];
adc4 = Dsum/SampleData;
//Io = 9;
/*----ADC arus in----*/
adc3 = ADC_value [1];
Csum -=Csq[k];
Csq[k] = adc3 ;
Csum +=Csq[k];
adc3 = Csum/SampleData;
//Iin = 5;
/*----ADC tegangan out----*/
adc2 = ADC_value [2];
Bsum -=Bsq[k];
Bsq[k] = adc2;
Bsum +=Bsq[k];
adc2 = Bsum/SampleData;
// Vo = (adc2*0.0055)-0.0033;
/*----ADC tegangan in----*/
adc1 = ADC_value [3];
Asum -=Asq[k];
Asq[k] = adc1;
Asum+=Asq[k];
adc1 = Asum/SampleData;
//Vin = (adc1*0.0113)-0.0137;
k++;
if(k >= SampleData)
k=0;
}
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM4_Init();
MX_TIM14_Init();
MX_USART3_UART_Init();
MX_RTC_Init();
/* USER CODE BEGIN 2 */
lcd_init();
HAL_TIM_Base_Start_IT(&htim14);
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) &ADC_value,4);
HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_3);
HAL_UART_Receive_DMA(&huart3,(uint8_t *) rx_data,4);
//TAMPILAN RTC//
// lcd_clear();
// lcd_gotoxy (1,0); lcd_puts ("---MELANI---");
// lcd_gotoxy (0,1); lcd_puts ("JAM : ");
// lcd_gotoxy (0,2); lcd_puts ("Tgl :");
/*---------PROGRAM RTC------------------*/
//SET TIME
sTime.Hours = 15;
sTime.Minutes = 14;
sTime.Seconds = 00;
HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN);
//SET DATE
sDate.Date = 07;
sDate.Month = RTC_MONTH_JUNE;
sDate.WeekDay = RTC_WEEKDAY_SUNDAY;
sDate.Year = 21;
HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN);
//TAMPILAN LCD
//TEGANGAN
// lcd_gotoxy(0,0); lcd_puts("PROYEK AKHIR MELANI");
// lcd_gotoxy(2,1); lcd_puts("SENSOR TEGANGAN");
// lcd_gotoxy(0,2); lcd_puts("ADC Value 1:");
// lcd_gotoxy(0,3); lcd_puts("ADC Value 2:");
// lcd_gotoxy(0,2); lcd_puts(" Tegangan 1:");
// lcd_gotoxy(0,3); lcd_puts(" Tegangan 2:");
//ARUS
//lcd_gotoxy(0,0); lcd_puts("PROYEK AKHIR MELANI");
//lcd_gotoxy(1,1); lcd_puts("--PENGUJIAN RELAY--");
//lcd_gotoxy(0,2); lcd_puts("ADC Value 1:");
//lcd_gotoxy(0,3); lcd_puts("ADC Value 2:");
//lcd_gotoxy(0,2); lcd_puts(" Arus 1:");
//lcd_gotoxy(0,3); lcd_puts(" Arus 2:");
//TAMPILAN LCD INTEGRASI//
lcd_gotoxy(0,0); lcd_puts("--BATERAI CHARGING--");
lcd_gotoxy(0,1); lcd_puts("Vin:");
lcd_gotoxy(0,2); lcd_puts("Iin:");
lcd_gotoxy(11,1); lcd_puts("Vo:");
lcd_gotoxy(11,2); lcd_puts("Io:");
lcd_gotoxy(0,3); lcd_puts("D :");
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//RELAY//
//if (V2<=11.96)
if(HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_7)==1)
{
HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,GPIO_PIN_SET);
HAL_Delay(1500);
HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,GPIO_PIN_RESET);
}
if(HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_6)==1)
{
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_12,GPIO_PIN_SET);
HAL_Delay(1500);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_12,GPIO_PIN_RESET);
}
if(HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_9)==1)
{
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_13,GPIO_PIN_SET);
HAL_Delay(1500);
HAL_GPIO_WritePin(GPIOD,GPIO_PIN_13,GPIO_PIN_RESET);
}
//PENGIRIMAN DATA BLUETOOTH//
//sprintf(buff_transmit, "Arus1= %.2f| Arus2= %.2f| Teg1= %2.2f| Teg2= %2.2f \n", 5.56, 9.00, 36.00, 14.4);
//HAL_UART_Transmit (&huart3, (uint8_t *)buff_transmit, strlen(buff_transmit), 200);
//HAL_Delay (200);
//RTC
HAL_RTC_GetTime(&hrtc, &sTime, RTC_FORMAT_BIN);
HAL_RTC_GetDate(&hrtc, &sDate, RTC_FORMAT_BIN);
/* Display time Format: hh:mm:ss */
// sprintf((char*)time,"%02d:%02d:%02d",sTime.Hours, sTime.Minutes, sTime.Seconds);
/* Display date Format: dd-mm-yy */
// sprintf((char*)date,"%02d-%02d-%2d",sDate.Date, sDate.Month, 2000 + sDate.Year);
// lcd_gotoxy(5,1); lcd_puts(time);
// lcd_gotoxy(5,2); lcd_puts(date);
// sprintf(buff_transmit, "[%02d/%02d/%02d %02d:%02d]\n Vin=%.2f | Vo=%.2f | Iin=%.2f | Io=%.2f \n\n",sDate.Date, sDate.Month, 2000 + sDate.Year, sTime.Minutes, sTime.Seconds, Vin, Vo, Iin, Io);
// HAL_UART_Transmit(&huart3, (uint8_t*) buff_transmit , strlen(buff_transmit),200);
// HAL_Delay(200);
//NILAI PWM
TIM4->CCR3 = pwm;
D = pwm /2099*100;
// lcd_gotoxy(0,0); lcd_puts("DRIVER MOSFET");
// lcd_gotoxy(0,1); lcd_puts("Nilai D :");
// HAL_Delay (600);
//ADC TEGANGAN DAN ARUS
sprintf(buff1, "%.1f", Vin);
sprintf(buff2, "%.1f", Vo);
sprintf(buff3, "%.1f", Iin);
sprintf(buff4, "%.1f", Io);
//TAMPILAN NILAI TEGANGAN DAN ARUS
lcd_gotoxy(4,1); lcd_puts(buff1);
lcd_gotoxy(14,1); lcd_puts(buff2);
lcd_gotoxy(4,2); lcd_puts(buff3);
lcd_gotoxy(14,2); lcd_puts(buff4);
lcd_gotoxy(5,3); lcd_puts(buffer);
sprintf(buffer, "%.2f", D);
HAL_Delay(600);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x23;
sTime.Minutes = 0x59;
sTime.Seconds = 0x45;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_SUNDAY;
sDate.Month = RTC_MONTH_DECEMBER;
sDate.Date = 0x31;
sDate.Year = 0x21;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 2099;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief TIM14 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 0;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 9999;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
/* DMA1_Stream3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn);
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PD12 PD13 PD0 PD1
PD2 PD3 PD4 PD5
PD6 PD7 */
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : PC6 PC7 PC9 */
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "HAL_lcd_character_STM32.h"
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#define PB_1 HAL_GPIO_ReadPin (GPIOB, GPIO_PIN_10)
#define PB_2 HAL_GPIO_ReadPin (GPIOB, GPIO_PIN_11)
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
/* USER CODE BEGIN PV */
char print0[20], print1[20], print2[20];
float RAF_V1=0, RAF_V2=0, RAF_V3=0, RAF_I1=0, RAF_I2=0, RAF_I3=0, RAF_L=0, RAF_PWM_I=0, RAF_SUPPLY=0;
int INTERUPT_DUTY=-1, RAF_CHARGING=-1, TYPE;
float CNT=0;
/* SETTING UP PARAMETER */
const float RAF_TARGET_VOUT_12=14; // set with condition of the PV
const float RAF_TARGET_VOUT_24=28; // set with condition of the PV
const float RAF_LOW_BATT_12=10; // set with condition of the battery
const float RAF_LOW_BATT_24=20; // set with condition of the battery (11.8 * 2)
float RAF_LOW_BATT;
const float RAF_CONDITION_VBATT_12=12;
const float RAF_CONDITION_VBATT_24=24;
float RAF_CONDITION_VIN_24=RAF_CONDITION_VBATT_24+(0.12*RAF_CONDITION_VBATT_24);
float RAF_CONDITION_VIN_12=RAF_CONDITION_VBATT_12+(0.12*RAF_CONDITION_VBATT_12);
float RAF_CONDITION_VIN, RAF_CONDITION_VBATT, RAF_TARGET_VOUT;
const float RAF_ERROR=0.0;
const float RAF_BATTERY_FULL_12=13.5;
const float RAF_BATTERY_FULL_24=27;
const float RAF_CURRENT_CHARGING=0.3;
float RAF_BATTERY_FULL;
int RAF_MENU=0;
int RAF_TEST=0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
__IO uint16_t adc_value[9];
/* SETTING UP CALIBRATION */
uint8_t RAF_RELAY_1 = 0;
uint8_t RAF_RELAY_2 = 0;
uint8_t RAF_CONTROL_RELAY_INTERVAL=50; // Time for Relay to take action (n secon *10)
uint8_t RAF_CALIBRATION_INTERVAL=20; // Time for PWM to take calibration (n secon * 10)
uint8_t RAF_CALIBRATION = 1;
float RAF_CHARGING_TIME = -1;
float RAF_D = 0;
float RAF_STEP = 0.6;
/* SETTING UP ADC WITH TIMER */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
if (htim->Instance==TIM2){
float adc_v1, adc_v2, adc_v3, adc_i1, adc_i2, adc_i3, adc_light, adc_pwm, adc_supply;
static float avg_adcv1=0, avg_adcv2=0, avg_adcv3=0, avg_adci1=0, avg_adci2=0, avg_adci3=0, avg_adclight=0, avg_adcpwm=0, avg_adcsupply=0;
static float real_adcv1=0, real_adcv2=0, real_adcv3=0, real_adci1=0, real_adci2=0, real_adci3=0, real_adclight=0, real_adcpwm=0, real_adcsupply=0;
static float counter=0;
adc_v1=adc_value[0]; adc_v2=adc_value[2]; adc_v3=adc_value[4];
adc_i1=adc_value[1]; adc_i2=adc_value[3]; adc_i3=adc_value[5];
adc_pwm=adc_value[6]; adc_light=adc_value[7]; adc_supply=adc_value[8];
avg_adcv1+=adc_v1; avg_adcv2+=adc_v2; avg_adcv3+=adc_v3; avg_adci1+=adc_i1; avg_adci2+=adc_i2; avg_adci3+=adc_i3; avg_adclight+=adc_light; avg_adcpwm+=adc_pwm; avg_adcsupply+=adc_supply;
counter++;
CNT = counter;
if (counter>=500){
real_adcv1=avg_adcv1/counter; real_adcv2=avg_adcv2/counter; real_adcv3=avg_adcv3/counter;
real_adci1=avg_adci1/counter; real_adci2=avg_adci2/counter; real_adci3=avg_adci3/counter;
real_adclight=avg_adclight/counter; real_adcpwm=avg_adcpwm/counter; real_adcsupply=avg_adcsupply/counter;
/* INPUT TO GLOBAL VARIABLE */
RAF_V1=real_adcv1; RAF_V2=real_adcv2; RAF_V3=real_adcv3; RAF_I1=real_adci1; RAF_I2=real_adci2; RAF_I3=real_adci3; RAF_L=real_adclight; RAF_PWM_I=real_adcpwm; RAF_SUPPLY=real_adcsupply;
avg_adcv1=0; avg_adcv2=0; avg_adcv3=0; avg_adci1=0; avg_adci2=0; avg_adci3=0; avg_adclight=0; avg_adcpwm=0; avg_adcsupply=0;
counter=0;
}
}
}
/* DECLARATION FUNCTION */
void raf_read_sensor(float *in_v, float *out_v, float *batt_v, float *in_i, float *out_i, float *batt_i, float *in_pwm, float *light, float *supply) {
//Calibration
if ( in_v != NULL ) {
if ( RAF_V1 <= 0 ) {
*in_v = 0;
} else {
*in_v = (0.01*RAF_V1) + 0.7232; // Callibration 04 Juli 2019
}
}
if ( out_v != NULL ) {
if ( RAF_V2 <= 0 ) {
*out_v = 0;
} else {
*out_v = (0.0081*RAF_V2) + 0.4214; // Callibration 3
}
}
if ( batt_v != NULL ) {
if ( RAF_V3 <= 0 ) {
*batt_v = 0;
} else {
*batt_v = (0.008*RAF_V3) + 0.415; // Callibration 3
}
}
if ( in_i != NULL ) {
if ( TYPE != 11 ){
//*in_i = ((-0.0082*RAF_I1) + 20.456);
*in_i = (*out_i*(*out_v))/(*in_v);
if ( *in_v <= 1 ){
*in_i = 0;
}
if ( *in_i <= 0 ){
*in_i = *in_i*(-1);
}
} else if ( TYPE == 11 ){
*in_i = (*out_i*(*out_v))/(*in_v);
}
}
if ( out_i != NULL ) {
*out_i = ((-0.0082*RAF_I2) + 24.456);
if ( *out_v == 0 ){
*out_i = 0;
}
if ( *out_i <= 0 ){
*out_i = *out_i*(-1);
}
}
if ( batt_i != NULL ) {
*batt_i = ((0.0077*RAF_I3) - 22.974); // Manual Callibration
if ( TYPE == 31 ){
*batt_i = *out_i - 2;
}
if ( *batt_i <= 0 ){
*batt_i = *batt_i * (-1);
}
}
if ( in_pwm != NULL ) {
*in_pwm = RAF_PWM_I/4095*100;
}
if ( light != NULL ) {
*light = (RAF_L/4095)*100;
}
if ( supply != NULL ) {
*supply = (RAF_SUPPLY/4095)*100;
}
}
/* SETTING UP CALIBRATION BATTERY */
void raf_select_battery(float batt_v){
if (batt_v <= (RAF_CONDITION_VBATT_12)){
RAF_CONDITION_VIN = RAF_CONDITION_VIN_12;
RAF_CONDITION_VBATT = RAF_CONDITION_VBATT_12;
RAF_TARGET_VOUT = RAF_TARGET_VOUT_12;
RAF_BATTERY_FULL = RAF_BATTERY_FULL_12;
RAF_LOW_BATT = RAF_LOW_BATT_12;
}
if (( batt_v > (RAF_CONDITION_VBATT_12) )){
RAF_CONDITION_VIN = RAF_CONDITION_VIN_24;
RAF_CONDITION_VBATT = RAF_CONDITION_VBATT_24;
RAF_TARGET_VOUT = RAF_TARGET_VOUT_24;
RAF_BATTERY_FULL = RAF_BATTERY_FULL_24;
RAF_LOW_BATT = RAF_LOW_BATT_24;
}
}
void raf_control_relay() {
uint8_t isSet_Relay_1 = 0;
static int raf_relay_1 = -1;
if ( raf_relay_1 != RAF_RELAY_1 ) {
if ( RAF_RELAY_1 ) {
HAL_GPIO_WritePin (GPIOB, GPIO_PIN_13, GPIO_PIN_SET); // Relay 1 (Load)
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_SET); // LED Indicator
} else {
HAL_GPIO_WritePin (GPIOB, GPIO_PIN_13, GPIO_PIN_RESET); // Relay 1 (Load)
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); // LED Indicator
}
isSet_Relay_1 = 1;
raf_relay_1 = RAF_RELAY_1;
}
static int raf_relay_2 = -1;
if ( raf_relay_2 != RAF_RELAY_2 ) {
if ( isSet_Relay_1 == 1 ) {
HAL_Delay(1000);
}
if ( RAF_RELAY_2 ) {
HAL_GPIO_WritePin (GPIOB, GPIO_PIN_14, GPIO_PIN_SET); // Relay 2 (Battery)
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_SET); // LED Indicator
} else {
HAL_GPIO_WritePin (GPIOB, GPIO_PIN_14, GPIO_PIN_RESET); // Relay 2 (Battery)
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); // LED Indicator
}
raf_relay_2 = RAF_RELAY_2;
}
}
void raf_calibration_relay(float relay){
static int relay_1=0, relay_2=0;
if ( relay==1 ){
relay_1++; relay_2--;
} else if ( relay==2 ){
relay_1--; relay_2++;
} else if ( relay==3 ){
relay_1++; relay_2++;
}
/* UJI RELAY */
#if 1
if ( relay_1<0 ){
RAF_RELAY_1=0;
} else {
RAF_RELAY_1=1;
}
if ( relay_2<0 ){
RAF_RELAY_2=0;
} else {
RAF_RELAY_2=1;
}
relay_1=0; relay_2=0;
#else
if ( RAF_RELAY_1 ) {
RAF_RELAY_1 = 0;
}
else {
RAF_RELAY_1 = 1;
}
if ( RAF_RELAY_2 ) {
RAF_RELAY_2 = 0;
}
else {
RAF_RELAY_2 = 1;
}
#endif
raf_control_relay();
}
void raf_reset_display(){
static int counter=0, counter1=0;
counter++; counter1++;
if (counter >= 2){
lcd_init();
counter=0;
}
if (counter1 >= 10){
lcd_clear();
counter1=0;
}
}
void raf_read_condition_supply(float in_v, float out_v, float batt_v, float batt_i, float supply){
static int relay_1=0, relay_2=0;
static int counter=0;
counter++;
if (RAF_CHARGING < 0){
if (supply<70){
if (in_v>=RAF_CONDITION_VIN && batt_v>RAF_CONDITION_VBATT){
relay_1++; relay_2--;
INTERUPT_DUTY=-1;
TYPE=11;
if (out_v <= (RAF_CONDITION_VIN-1) && out_v >= RAF_CONDITION_VBATT){
raf_reset_display();
}
} else if (in_v>=RAF_CONDITION_VIN && batt_v<=RAF_CONDITION_VBATT){
relay_1++; relay_2++;
INTERUPT_DUTY=-1; RAF_CHARGING=1;
TYPE=12;
if (out_v <= (RAF_CONDITION_VIN-1) && out_v >= RAF_CONDITION_VBATT){
raf_reset_display();
}
} else if (in_v<RAF_CONDITION_VIN && batt_v>RAF_LOW_BATT){
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
relay_1++; relay_2++;
RAF_CHARGING=-1;
TYPE=13;
} else if (in_v<RAF_CONDITION_VIN && batt_v<RAF_LOW_BATT){
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
relay_1--; relay_2--;
RAF_CHARGING=-1;
TYPE=14;
}
} else if (supply>=70){
if (in_v>=RAF_CONDITION_VIN && batt_v>RAF_CONDITION_VBATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=21;
} else if (in_v>=RAF_CONDITION_VIN && batt_v<RAF_CONDITION_VBATT){
relay_1--; relay_2++;
INTERUPT_DUTY=-1; RAF_CHARGING=1;
TYPE=22;
} else if (in_v<RAF_CONDITION_VIN && batt_v>RAF_CONDITION_VBATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=23;
} else if (in_v<RAF_CONDITION_VIN && batt_v<RAF_CONDITION_VBATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=24;
}
}
}
if (RAF_CHARGING > 0){
if (supply<70){
if (in_v>=RAF_CONDITION_VIN){
relay_1++;
INTERUPT_DUTY=-1;
} else if (in_v<RAF_CONDITION_VIN){
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
relay_1++; relay_2++;
RAF_CHARGING=-1;
}
if ( counter >= 1000 ){
if (batt_i<RAF_CURRENT_CHARGING){
relay_2--;
counter = 0;
RAF_CHARGING=-1;
}
}
TYPE=31;
} else if (supply>=70){
if (in_v>=RAF_CONDITION_VIN){
relay_1--;
} else if (in_v<RAF_CONDITION_VIN){
relay_1--; relay_2--;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
}
if ( counter >= 1000 ){
if (batt_i<RAF_CURRENT_CHARGING){
relay_2--;
counter = 0;
RAF_CHARGING=-1;
}
}
TYPE=32;
}
}
/* UJI RELAY */
#if 1
if ( relay_1 != 0){
if ( relay_1<0 ){
RAF_RELAY_1=0;
} else {
RAF_RELAY_1=1;
}
if ( relay_2<0 ){
RAF_RELAY_2=0;
} else {
RAF_RELAY_2=1;
}
relay_1=0; relay_2=0;
}
#else
if ( RAF_RELAY_1 ) {
RAF_RELAY_1 = 0;
}
else {
RAF_RELAY_1 = 1;
}
if ( RAF_RELAY_2 ) {
RAF_RELAY_2 = 0;
}
else {
RAF_RELAY_2 = 1;
}
#endif
raf_control_relay();
}
void raf_read_condition_light(float in_v, float out_v, float batt_v, float batt_i, float light){
static int relay_1=0, relay_2=0;
static int counter=0;
counter++;
if (RAF_CHARGING < 0){
if (light>=95){
if (in_v>=RAF_CONDITION_VIN && batt_v>RAF_LOW_BATT){
relay_1++; relay_2--;
INTERUPT_DUTY=-1;
TYPE=11;
if (out_v <= RAF_CONDITION_VIN && out_v >= RAF_CONDITION_VBATT){
raf_reset_display();
}
} else if (in_v>=RAF_CONDITION_VIN && batt_v<=RAF_LOW_BATT){
relay_1++; relay_2++;
INTERUPT_DUTY=-1; RAF_CHARGING=1;
TYPE=12;
if (out_v <= RAF_CONDITION_VIN && out_v >= RAF_CONDITION_VBATT){
raf_reset_display();
}
} else if (in_v<RAF_CONDITION_VIN && batt_v>RAF_LOW_BATT){
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
relay_1++; relay_2++;
RAF_CHARGING=-1;
TYPE=13;
} else if (in_v<RAF_CONDITION_VIN && batt_v<RAF_LOW_BATT){
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
relay_1--; relay_2--;
RAF_CHARGING=-1;
TYPE=14;
}
} else if (light<95){
if (in_v>=RAF_CONDITION_VIN && batt_v>RAF_LOW_BATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=21;
} else if (in_v>=RAF_CONDITION_VIN && batt_v<RAF_LOW_BATT){
relay_1--; relay_2++;
INTERUPT_DUTY=-1; RAF_CHARGING=1;
TYPE=22;
} else if (in_v<RAF_CONDITION_VIN && batt_v>RAF_LOW_BATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=23;
} else if (in_v<RAF_CONDITION_VIN && batt_v<RAF_LOW_BATT){
relay_1--; relay_2--;
RAF_CHARGING=-1;
if (RAF_TEST != 1){
INTERUPT_DUTY=1;
}
TYPE=24;
}
}
}
if (RAF_CHARGING > 0){
if (light>=95){
if (batt_i<RAF_CURRENT_CHARGING){
relay_2--;
RAF_CHARGING=-1;
}
TYPE=31;
} else if (light<95){
if (batt_i<RAF_CURRENT_CHARGING){
relay_2--;
RAF_CHARGING=-1;
}
TYPE=32;
}
}
/* UJI RELAY */
#if 1
if ( relay_1 != 0){
if ( relay_1<0 ){
RAF_RELAY_1=0;
} else {
RAF_RELAY_1=1;
}
if ( relay_2<0 ){
RAF_RELAY_2=0;
} else {
RAF_RELAY_2=1;
}
relay_1=0; relay_2=0;
}
#else
if ( RAF_RELAY_1 ) {
RAF_RELAY_1 = 0;
}
else {
RAF_RELAY_1 = 1;
}
if ( RAF_RELAY_2 ) {
RAF_RELAY_2 = 0;
}
else {
RAF_RELAY_2 = 1;
}
#endif
raf_control_relay();
}
void raf_display_1(float in_v, float out_v, float batt_v){
lcd_gotoxy(0,2);
sprintf(print0, "Vi:%2.2f ", in_v); lcd_puts(print0);
lcd_gotoxy(8,2); lcd_puts("V ");
lcd_gotoxy(10,1);
sprintf(print0, "Vo:%2.2f ", out_v); lcd_puts(print0);
lcd_gotoxy(18,1); lcd_puts("V ");
lcd_gotoxy(10,2);
sprintf(print0, "Vb:%2.2f ", batt_v); lcd_puts(print0);
lcd_gotoxy(18,2); lcd_puts("V ");
}
void raf_display_2(float in_i, float out_i, float batt_i){
lcd_gotoxy(0,2);
sprintf(print0, "Ii:%2.2f ", in_i); lcd_puts(print0);
lcd_gotoxy(8,2); lcd_puts("A ");
lcd_gotoxy(10,1);
sprintf(print0, "Io:%2.2f ", out_i); lcd_puts(print0);
lcd_gotoxy(18,1); lcd_puts("A ");
lcd_gotoxy(10,2);
sprintf(print0, "Ib:%2.2f ", batt_i); lcd_puts(print0);
lcd_gotoxy(18,2); lcd_puts("A ");
}
void raf_display_3(float in_p, float out_p, float batt_p){
lcd_gotoxy(0,2);
sprintf(print0, "Pi:%3.1f ", in_p); lcd_puts(print0);
lcd_gotoxy(8,2); lcd_puts("W ");
lcd_gotoxy(10,1);
sprintf(print0, "Po:%3.1f ", out_p); lcd_puts(print0);
lcd_gotoxy(18,1); lcd_puts("W ");
lcd_gotoxy(10,2);
sprintf(print0, "Pb:%3.1f ", batt_p); lcd_puts(print0);
lcd_gotoxy(18,2); lcd_puts("W ");
}
float raf_set_DUTY(float duty_in_precent) {
int pwm = (int)round((duty_in_precent/100) * 1799);
TIM1 -> CCR4=pwm;
HAL_Delay(50);
float in_v, out_v;
raf_read_sensor(&in_v, &out_v, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
return out_v;
}
float raf_set_DUTY_callibration(float duty_in_precent) {
/* Callibration */
int pwm = (int)round((duty_in_precent/100) * 1799);
TIM1 -> CCR4=pwm;
HAL_Delay(100);
float in_v, out_v;
raf_read_sensor(&in_v, &out_v, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
return out_v;
}
float raf_set_MANUAL(float pwm_in_precent) {
RAF_D=pwm_in_precent;
int pwm = (int)round((pwm_in_precent/100) * 1799);
TIM1 -> CCR4=pwm;
HAL_Delay(100);
float in_v, out_v;
raf_read_sensor(&in_v, &out_v, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
return out_v;
}
void raf_set_CALIBRATION_V(float adc_v1, float adc_v2, float adc_v3){
lcd_gotoxy(0,2);
sprintf(print1, "Vi: %4.0f ", adc_v1); lcd_puts(print1);
lcd_gotoxy(10,1);
sprintf(print1, "Vo: %4.0f ", adc_v2); lcd_puts(print1);
lcd_gotoxy(10,2);
sprintf(print1, "Vb: %4.0f ", adc_v3); lcd_puts(print1);
}
void raf_set_CALIBRATION_I(float adc_i1, float adc_i2, float adc_i3){
lcd_gotoxy(0,2);
sprintf(print1, "Ii: %4.0f ", adc_i1); lcd_puts(print1);
lcd_gotoxy(10,1);
sprintf(print1, "Io: %4.0f ", adc_i2); lcd_puts(print1);
lcd_gotoxy(10,2);
sprintf(print1, "Ib: %4.0f ", adc_i3); lcd_puts(print1);
}
float raf_get_step(int D) {
float out_v_before;
raf_read_sensor(NULL, &out_v_before, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
float out_v = raf_set_DUTY(RAF_D);
float local_step = out_v - out_v_before;
if ( local_step < 0 ) {
local_step *= -1;
}
return local_step;
}
float raf_get_step_callibration(int D) {
float out_v_before;
raf_read_sensor(NULL, &out_v_before, NULL, NULL, NULL, NULL, NULL, NULL, NULL);
float out_v = raf_set_DUTY_callibration(RAF_D);
float local_step = out_v - out_v_before;
if ( local_step < 0 ) {
local_step *= -1;
}
return local_step;
}
void raf_calibration() {
float OUT_V = -1;
lcd_gotoxy(0,1);
lcd_puts(" CALIBRATING ");
float step = 0;
for ( int i = 0; (float)i < (float)RAF_CALIBRATION_INTERVAL; i++ ) {
if (i == 0){
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_SET); // LED Indicator
}
else if (i %2 == 0){
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_SET); // LED Indicator
}
else{
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); // LED Indicator
}
if ( OUT_V >= 11 ) {
step += raf_get_step_callibration(RAF_D--);
} else {
step += raf_get_step_callibration(RAF_D++);
}
float z = ((float)i/(float)RAF_CALIBRATION_INTERVAL)*100;
/* ANIMATION LOADING */
lcd_gotoxy(0,2);
sprintf(print2, " %.0f ",z); lcd_puts(print2);
lcd_gotoxy(13,2);
sprintf(print2, "%%"); lcd_puts(print2);
z=((float)i/(float)RAF_CALIBRATION_INTERVAL)*20;
lcd_gotoxy(z,3); lcd_puts("*");
HAL_Delay(100);
}
HAL_GPIO_WritePin (GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); // LED Indicator OFF
RAF_STEP = step/RAF_CALIBRATION_INTERVAL;
RAF_CALIBRATION = 0;
lcd_clear();
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM1_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA (&hadc1, (uint32_t*) &adc_value, 9);
HAL_TIM_Base_Start (&htim1);
HAL_TIM_Base_Start_IT (&htim2);
HAL_TIM_PWM_Start (&htim1, TIM_CHANNEL_4);
lcd_gotoxy(0,0); lcd_puts(" EMERGENCY SOLAR ");
lcd_gotoxy(0,1); lcd_puts(" CONTROLER ");
lcd_gotoxy(0,2); lcd_puts("By Mochammad Rafli I");
lcd_gotoxy(0,3); lcd_puts(" 13031610087 "); HAL_Delay(2000);
lcd_clear();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* DECLARATION */
float adc_v1=RAF_V1, adc_v2=RAF_V2, adc_v3=RAF_V3, adc_i1=RAF_I1, adc_i2=RAF_I2, adc_i3=RAF_I3;
float in_v, out_v, batt_v, in_i, out_i, batt_i, in_pwm, light, supply;
float in_p, out_p, batt_p;
//static int counter_display=0;
//counter_display++;
/* READING ADC */
raf_read_sensor(&in_v, &out_v, &batt_v, &in_i, &out_i, &batt_i, &in_pwm, &light, &supply);
/* POWER VALUE */
in_p=in_v*in_i;
out_p=out_v*out_i;
batt_p=batt_v*batt_i;
/* SELECTING BATTERY */
raf_select_battery(batt_v);
/* CALIBRATION DUTY */
if ( RAF_CALIBRATION ) {
raf_calibration();
}
// SELECTING DUTY METHOD
if ( RAF_TEST == 0 ){
if ( INTERUPT_DUTY <= 0 ){
if ( out_v < (RAF_TARGET_VOUT-(RAF_ERROR*RAF_TARGET_VOUT))) {
float a = (RAF_TARGET_VOUT-(RAF_ERROR*RAF_TARGET_VOUT)) - out_v;
a = a / (10*RAF_STEP);
if ( RAF_D + a <95 ) {
RAF_D = RAF_D + a;
} else {
RAF_D = 95;
}
raf_get_step(RAF_D);
} else if ( out_v > (RAF_TARGET_VOUT+(RAF_ERROR*RAF_TARGET_VOUT))) {
float a = out_v - (RAF_TARGET_VOUT+(RAF_ERROR*RAF_TARGET_VOUT));
a = a / (10*RAF_STEP);
if ( RAF_D > a ) {
RAF_D = RAF_D - a;
} else {
RAF_D = 0;
}
}
} else if ( INTERUPT_DUTY > 0 ){
RAF_D = 0;
raf_get_step(RAF_D);
}
} else if( RAF_TEST == 1){
raf_set_MANUAL(in_pwm);
raf_display_1(in_v, out_v, batt_v);
lcd_gotoxy(0,0); lcd_puts("SMART ECC (Testing) ");
}
/* READING CONDITION */
//raf_read_condition_light(in_v, out_v, batt_v, batt_i, light);
raf_read_condition_supply(in_v, out_v, batt_v, batt_i, supply);
/* CONTROL RELAY FOR CALIBRATION ONLY */
/*
int relay=1;
raf_calibration_relay(relay);
*/
/* DISPLAY D B T L*/
lcd_gotoxy(0,1);
sprintf(print2, "D : %3.0f ", RAF_D); lcd_puts(print2);
lcd_gotoxy(8,1); lcd_puts("% ");
if (supply < 70){
lcd_gotoxy(0,3);
sprintf(print2, "S : No Supply "); lcd_puts(print2);
} else if (supply > 70){
lcd_gotoxy(0,3);
sprintf(print2, "S : Supply Good"); lcd_puts(print2);
}
//lcd_gotoxy(10,3);
//sprintf(print2, "TP: %d", TYPE); lcd_puts(print2);
//counter_display = 0;
/* PUSH BUTTON FUNCTION */
static int prev_raf_menu = -1;
if ( PB_1 ){
HAL_Delay(100);
if ( PB_1 ){
if ( prev_raf_menu != RAF_MENU ) {
lcd_init();
RAF_MENU = (RAF_MENU + 1) % 3;
prev_raf_menu = RAF_MENU;
}
}
} else {
prev_raf_menu = -1;
}
if ( RAF_TEST == 0 ) {
if ( RAF_MENU == 0 ) {
raf_display_1(in_v, out_v, batt_v);
}
else if ( RAF_MENU == 1 ) {
raf_display_2(in_i, out_i, batt_i);
}
else if ( RAF_MENU == 2 ) {
raf_display_3(in_p, out_p, batt_p);
}
}
/* TESTING BUTTON FUNCTION */
static int prev_raf_test = -1;
if ( PB_2 ){
HAL_Delay(100);
if ( PB_2 ){
if ( prev_raf_test != RAF_TEST ) {
lcd_init();
RAF_TEST = (RAF_TEST + 1) % 4;
prev_raf_test = RAF_TEST;
}
}
} else {
prev_raf_test = -1;
}
if ( RAF_TEST == 2 ){
raf_set_CALIBRATION_V(adc_v1, adc_v2, adc_v3);
lcd_gotoxy(0,0); lcd_puts("SMART ECC (Clbr. V) ");
}
else if ( RAF_TEST == 3 ){
raf_set_CALIBRATION_I(adc_i1, adc_i2, adc_i3);
lcd_gotoxy(0,0); lcd_puts("SMART ECC (Clbr. I) ");
}else if ( RAF_TEST == 0 ){
lcd_gotoxy(0,0); lcd_puts("SMART ECC ");
}
HAL_Delay(100);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 9;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = ADC_REGULAR_RANK_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = ADC_REGULAR_RANK_6;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_6;
sConfig.Rank = ADC_REGULAR_RANK_7;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_7;
sConfig.Rank = ADC_REGULAR_RANK_8;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_9;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 0;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 1799;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 999;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 143;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_OC_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_TIMING;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PB10 PB11 */
GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PB13 PB14 PB3 PB4
PB5 PB6 PB7 PB8
PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lcd_character.h"
#include "math.h"
#include "stdbool.h"
#include "stdlib.h"
#include "string.h"
#include "stm32f4xx_hal.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
RTC_HandleTypeDef hrtc;
TIM_HandleTypeDef htim4;
TIM_HandleTypeDef htim14;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
/* USER CODE BEGIN PV */
RTC_TimeTypeDef sTime;
RTC_DateTypeDef sDate;
/* CALIBRATION */
__IO uint16_t ADC_value [4];
uint8_t MEL_CALIBRATION = 1; // Change up to customer
uint8_t MEL_CALIBRATION_INTERVAL = 20; // Change up to customer
int MEL_CHARGING = 0;
/* DISPLAY */
char print[20], print1[20];
/* SENSOR */
float MEL_V1 = 0, MEL_V2 = 0, MEL_I1 = 0, MEL_I2 = 0;
float MEL_COUNTER = 0;
int SampleData = 1000;
/*PARAMETER*/
cons int MEL_VOUT_TARGET = 14.4;
cons int MEL_STEP = 0.5;
//PWM
float MEL_DUTY;
char buffer[200];
//Bluetooth
uint8_t rx_data[20];
char buff_transmit[50];
//RTC
char time[50], date[50];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM14_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_RTC_Init(void);
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim->Instance==TIM14) {
float adc_v1 = ADC_value[3], adc_v2 = ADC_value[2], adc_i1 = ADC_value[1], adc_i2 = ADC_value[0];
static float avg_adcv1, avg_adcv2, avg_adci1, avg_adci2, count = 0;
avg_adcv1 += adc_v1; avg_adcv2 += adc_v2; avg_adci1 += adc_i2; count++;
if (count>= SampleData) {
/* INPUT TO ADC GLOBAL */
MEL_V1 = avg_adcv1/count; MEL_V2 = avg_adcv2/count; MEL_I1 = avg_adci1/count; MEL_I2 = avg_adci2/count;
avg_adcv1 = 0; avg_adcv2 = 0; avg_adci1 = 0; avg_adci2 = 0; count = 0;
}
}
}
void mel_read_sensor(float *in_v, float *out_v, float *in_i, float *out_i) {
if (in_v != NULL) {
*in_v = 0;
} else {
*in_v = (0.01*MEL_V1) + 0.7232; // Need updated calibration
}
if (out_v != NULL) {
*out_v = 0;
} else {
*out_v = (0.0081*MEL_V2) + 0.4214; // Need updated calibration
}
if (in_i != NULL) {
*in_i = 0;
} else {
*in_i = ((-0.0082*MEL_I1) + 20.456); // Need updated calibration
}
if (out_i != NULL) {
*out_i = 0;
} else {
*out_i = ((0.0077*MEL_I2) - 22.974); // Need updated calibration
}
}
float mel_set_DUTY(float duty_in_percent) {
int pwm = (int)round((duty_in_percent/100)*2099);
TIM4->CCR3 = pwm;
HAL_Delay(50);
float in_v, out_v;
mel_read_sensor(&in_v, &out_v, NULL, NULL);
return out_v;
}
float mel_get_step(int D) {
float out_v_before;
mel_read_sensor(NULL, &out_v_before, NULL, NULL);
float out_v = mel_set_DUTY(MEL_DUTY);
float local_step = out_v - out_v_before;
if (local_step < 0) {
local_step *= -1;
}
return local_step;
}
void mel_display(float in_v, float out_v, float in_i, float out_i) {
lcd_gotoxy(0,2);
sprintf(print, "Vi:%2.2f ", in_v); lcd_puts(print);
lcd_gotoxy(8,2); lcd_puts("V ");
lcd_gotoxy(10,1);
sprintf(print, "Vo:%2.2f ", out_v); lcd_puts(print);
lcd_gotoxy(18,1); lcd_puts("V ");
lcd_gotoxy(10,2);
}
void mel_calibration() {
float OUT_V = -1;
lcd_gotoxy(0,1);
lcd_puts(" CALIBRATING ");
float step = 0;
for ( int i = 0; (float)i < (float)MEL_CALIBRATION_INTERVAL; i++ ) {
if ( OUT_V >= 11 ) {
step += mel_get_step(MEL_DUTY--);
} else {
step += mel_get_step(MEL_DUTY++);
}
float z = ((float)i/(float)MEL_CALIBRATION_INTERVAL)*100;
/* ANIMATION LOADING */
lcd_gotoxy(0,2);
sprintf(print, " %.0f ",z); lcd_puts(print);
lcd_gotoxy(13,2);
sprintf(print, "%%"); lcd_puts(print);
z=((float)i/(float)MEL_CALIBRATION_INTERVAL)*20;
lcd_gotoxy(z,3); lcd_puts("*");
HAL_Delay(100);
}
MEL_STEP = step/MEL_CALIBRATION_INTERVAL;
MEL_CALIBRATION = 0;
lcd_clear();
}
void mel_control_relay(float relay) {
static int relay = 0;
}
void mel_check_battery (float in_v, float out_v, float in_i, float out_i) {
static int relay_1 = 0, relay_2 = 0, relay_3 = 0;
float batter_1 = 0, battery_2 = 0, battery_3 = 0;
static int counter = 0;
counter++;
if (counter > 0) {
mel_control_relay(1);
battery_1 = out_v;
}
} else if (counter > 5) {
mel_control_relay(2) {
}
} else if (counter > 10) {
}
}
void mel_read_condition (float in_v, float out_v, float in_i, float out_i) {
static int relay_1 = 0, relay_2 = 0, relay_3 = 0;
static int counter = 0;
counter++;
if (in_v < 15) {
if (in_v >= MEL_STD_VIN && )
}
}
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_TIM4_Init();
MX_TIM14_Init();
MX_USART3_UART_Init();
MX_RTC_Init();
/* USER CODE BEGIN 2 */
lcd_init();
HAL_TIM_Base_Start_IT(&htim14);
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) &ADC_value,4);
HAL_TIM_PWM_Start(&htim4,TIM_CHANNEL_3);
HAL_UART_Receive_DMA(&huart3,(uint8_t *) rx_data,4);
//TAMPILAN LCD INTEGRASI//
lcd_gotoxy(0,0); lcd_puts("-- ALAT YG SYUPER --");
lcd_gotoxy(0,1); lcd_puts(" CHUWANGGIHHH ");
lcd_gotoxy(0,2); lcd_puts("By Melati ELIN 2018 ");
lcd_gotoxy(0,3); lcd_puts(" NIP ISI SENDIRI "); HAL_Delay(2000);
lcd_clear();
while (1)
{
/* DECLARATION */
float in_v, out_v, in_i, out_i;
/* READING ADC */
mel_read_sensor(&in_v, &out_v, &in_i, &out_i);
/* CALIBRATION DUTY STEP */
if (MEL_CALIBRATION) {
mel_calibration();
}
/* DUTY CALCULATION */
if (out_v < MEL_VOUT_TARGET) {
float a = (MEL_VOUT_TARGET) - out_v;
a = a/(10*MEL_STEP);
if (MEL_DUTY + a < 99) {
MEL_DUTY = MEL_DUTY + a;
} else {
MEL_DUTY = 99;
}
mel_get_step(MEL_DUTY); // Calling Duty function
} else if (out_v > MEL_VOUT_TARGET) {
float a = (MEL_VOUT_TARGET) + out_v;
a = a/(10*MEL_STEP);
if (MEL_DUTY > a) {
MEL_DUTY = MEL_DUTY - a;
} else {
MEL_DUTY = 0;
}
mel_get_step(MEL_DUTY); // Calling Duty function
}
/* SHOW LCD */
mel_display(in_v, out_v, in_i, out_i);
lcd_gotoxy(0,1);
sprintf(print1, "D : %3.0f ", MEL_DUTY); lcd_puts(print1);
lcd_gotoxy(8,1); lcd_puts("% ");
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = ENABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = 2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_2;
sConfig.Rank = 4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0x23;
sTime.Minutes = 0x59;
sTime.Seconds = 0x45;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_SUNDAY;
sDate.Month = RTC_MONTH_DECEMBER;
sDate.Date = 0x31;
sDate.Year = 0x21;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 0;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 2099;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief TIM14 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM14_Init(void)
{
/* USER CODE BEGIN TIM14_Init 0 */
/* USER CODE END TIM14_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM14_Init 1 */
/* USER CODE END TIM14_Init 1 */
htim14.Instance = TIM14;
htim14.Init.Prescaler = 0;
htim14.Init.CounterMode = TIM_COUNTERMODE_UP;
htim14.Init.Period = 9999;
htim14.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim14.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim14) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim14, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM14_Init 2 */
/* USER CODE END TIM14_Init 2 */
}
/**
* @brief USART3 Initialization Function
* @param None
* @retval None
*/
static void MX_USART3_UART_Init(void)
{
/* USER CODE BEGIN USART3_Init 0 */
/* USER CODE END USART3_Init 0 */
/* USER CODE BEGIN USART3_Init 1 */
/* USER CODE END USART3_Init 1 */
huart3.Instance = USART3;
huart3.Init.BaudRate = 9600;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART3_Init 2 */
/* USER CODE END USART3_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);
/* DMA1_Stream3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn);
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
/*Configure GPIO pin : PA3 */
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PD12 PD13 PD0 PD1
PD2 PD3 PD4 PD5
PD6 PD7 */
GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1
|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : PC6 PC7 PC9 */
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/